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C H A N G E S  O F  A P O R O U S  S T R U C T U R E  I N  F L O W  

OF A M O N O D I S P E R S E  M E D I U M  

Yu. I. Kapranov UDC 532.546 

The motion of fluids with suspended particles in porous media is considered. A mathematical 
model for the interaction of a monodisperse suspension with a porous structure is proposed. 
Changes in the parameters of the medium and the flow are studied for equilibrium regimes. 

The need to study the motion of fluids containing dispersed phases in porous media arises in many 
practical problems. Among these problems are purification of fluids by filtration, reduction in the conductivi ty 
of the neax-weU zone of a bed due to penetrat ion of a flushing fluid filtrate into it, evaluation of the effects of 
reinforcing of the emulsified phase by mechanical impurities in working wells, etc. [1-3]. 

Semiempirical models are widely used for analysis of these phenomena.  The filtration of low- 
concentration suspensions was considered by Shekhtman [2]. He used approximate equations and assumed 
tha t  the rate of entrainment of particles of the flow in the medium was proport ional  to the deviation of the 
concentration from a certain equilibrium value. At the same time, a comparison with the experiments of [4, 
5] shows that ,  in many cases, the kinetics of sedimentat ion is strongly affected by tile velocity of filtration. 
Schematization of a pore space used in [6, 7] introduces new additional empirical constants, and the system of 
balance equations obtained for averaged quantities is approximate [5]. A correct  form of this system (without  
a continuity equation for liquid phase) is given in [8]. 

In the method of network modeling [1], a porous medium is replaced by a fixed set of points (pores) 
connected by channels with randomly distributed radii. Here the fundamental  difficulties are related to the 
significant limitation of ttm network size, considerable number of additional parameters,  and application of a 
number of percolation hypothesis that are substantially quasistationaxy in character.  

The present paper extends the approach proposed in [9] to the motion of a monodisperse suspension 
(the corresponding approximate model is given in [10]). This makes it possible not only to formulate an exact 
system of equations for integral characteristics in a comparatively simple way but  also to describe changes 
in the structural parameters of the medium in the sedimentation process. The  class of equilibrium regimes 
obtained in this case serves as a basis for construction of fundamental relations for integral models. 

1. F o r m u l a t i o n  o f  t he  M o d e l .  We consider the motion of a fluid carrying suspended particles of 
the same radius t~ through a porous medium. The  flow is one-dimensional and is along the x axis. Let t be 
time, v(x, t) be the velocity of filtration, re(x, t) be the porosity, and N(x,  t) and c(x, t) be the number and 
volume concentrations of particles in the flow. The  solid and liquid phases in the suspension, and the matr ix  

of the porous medium are considered incomPressible. 
A volume element of a porous medium at an arbi t rary  point x is assumed to consist of sieve-like layers 

tha t  axe adjacent to each other and perpendicular to the flow and whose thickness l(x, t) ~r ies  in t ime and 
space. The pores in a layer are treated as right circular cylinders with an axis of length l along the flow and 
with randomly distributed radii r. Let Ms(x, t) be the number of such channels per unit area of the layer, 
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~ ( r ,  x, t) be the distribution of the channels in the layer by their radii, and M(x, t) be the number of pores 
per unit  volume. The layers are treated as probabili ty-independent in the sense tha t  after a particle passes 
through a certain channel of tile layer, it comes to the entrance of a channel of radius r of the next layer with 
the probabil i ty determined only by the function ~s(r,  x, t). 

The  function ~s is nonnegative and satisfies the condition 
o o  

f = 1. (1) 
0 

The  porosi ty m is related to M, ~s, and 1 by the equality 
oO 

m = 7rlM / r2~s dr. (2) 

o 
There  are 1/l layers per unit length along the flow, and, therefore, Ms = IM. Hence, tim degree of perforat ion 
(surface porosity) and (volume) porosity coincide, so tha t  this schematization of the pore space is statically 
isotropic [11]. 

Let  us consider a single layer with cross-sectional area S. The number of particles that pass through 
o c  

# 

its channels of radius r in time dt is equal to vSdtNr2~ d r / / r 2 ~ d r .  A particle is entrained in 
t 
r J 

0 
this channel if its radius is smaller than the radius of the particle. Ttmrefore, over this period of time, 

vSdtNfr2~sdr/fr2~sdrparticlesareentrainedinthelayer. SincethevolumeSdxcontainsdx/llay- 
/ 

0 0 
ers, we have 

o o 

The  relation between the volume concentration c and the number concentration N is c = 47rf~3N/3, and, 

therefore, the equation obtained can be written as 

f~ o o  

0 0 

The  quanti ty q in (3) is the probability of the event tha t  a particle tha t  comes to the layer is entrained 
in it. This  quanti ty depends on x and t, and is considerably affected by the part icle size and the initial s tate  
of the porous structure. If, for example, at t = 0, pore channels are absent in the interval 0 < r < fi, the 
source term in (3) is zero at all times, and only simple transfer  of the suspension occurs. 

The  cross-sectional area of channels of radius r in the layer is SJlsTvr2~s dr. The  volume of suspension 
passing through this area in time dt is (v/m) dt SMsTrr2~s dr, and it carries N(v/m) dt SMsTrr2~s dr particles. 
Channels with radii r > fi remain permeable and their radii are unchanged. Some of the channels with 
radii r < p become blocked up. The number of these in the volume Sdx is (dx/l)N(v/m)dtSM87rr2~s dr. 
Therefore,  the number density M~s of cylindrical pores of radius r must satisfy the equation 

o o  

O(l~I~.s) 3r2~ysvc / f ,) 
0 ~  - -  4~rfi3----- ~ g(fi - r ) /  j r-~s dr. (4) 

0 

From here on, H(x) denotes the Heaviside step function: H(x) = 1 for x > 0 and H(x) = 0 for x < 0. 
From (4), the normalization condition (1), and the definition of q in (3), we obtain the following 

expression for the rate  of change in the number of pores in unit volume: 
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OM 3 q 
O----t = - v c  4~rfi-------g 7" (5) 

According to (3) and (5), the number of pores blocked up in unit t ime coincides with the number  of 
particles entrained in the medium in unit time. As follows from (4), the number  density of pores with radii 
of cylinders r > fi does not change with time. The  total  number of pores is also conserved. At the same time, 

in view of (4) and (5), we have 

M 0~.~ 3~.~vc 
Ot - 4~p31( . l ' r2~sdr  - r 2 H ( p -  r))  / f r2~sdr" 

o o 
Therefore, the contribution of pores with radii greater  than the radius of particles increases with time. 
However, a similar tendency is also characteristic for pores with radii 0 < r < r , ,  where r ,  = r , (x , t )  is 

defined by the equality 

2 S r2~s r ,  = dr. 

0 

Tim reason for such behavior is that, as compared to pores with radii r < r , ,  the  number of pores with radius 
r ,  < r < fi is smaller and the probability that  they become blocked up is lower. It can be shown tha t  the 
quanti ty r ,  decreases with time. 

Next, in view of (2), 
Oo 

S ,,.r_..,, 
Om dr) + Ot = 1 AITr r2~s j r ~s ar-~, 

and, therefore, as follows from (4), 

OrT~ 
Ot 

0 0 

- l Ot vc - ~  . r4cfis dr r21Zs dr. 
o 0 

Since all phases involved in the process are incompressible, the volume of the particles entrained in the 
medium in unit time must coincide with the volume of all pores blocked up by these particles over the same 
period of time. From this fact and from (3), we obtain the following equation for porosity: 

0 m  q 
= - v c - .  (6 )  

Ot l 
In addition, the thickness of the layers 1 varies in such a way that the following equation is satisfied: 

/5 (N3 

w(. r _I ) tyFp3 j r4~o.d. /, P~.d.-q . (7) 
o o 

Because of incompressibility, the blocking of the pore space by solid particles does not remove the 

liquid phase from the flow, and, hence, [5] 

0 ( . ( 1  - c))  a ( . ~ ( i  - c ) )  + = 0. 
Ot Ox 

From this and from (3) and (6), we obtain the following equation for the velocity of filtration of the suspen- 

sion: 
Ov 
- -  = 0.  ( s )  
Ox 

Taking the velocity of suspended particles equal to the flow velocity, we assume Darcy's law for the 

suspension as a whole [2]: 
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k0p 
v . . . .  (9) 

# Ox" 

Here p is the pressure in the suspension, # is its viscosity, and k is the permeability. 
To connect the permeability variations with the flow parameters, we fix the pressure differential Op/Ox 

at the point x. In each layer, the flux ( v / m ) d t  S2$lsTrr2~s dr comes to channels with radii r < ~ from the 
neighborhood S d x  of the point x in time dt, and it carries 3cv/(4~fi3m) dt S~IsTrr2~s dr  suspended particles. 
Over the same period of time, the same number of these channels becomes blocked up. In the Hagen-Poiseuille 

3vc,~ 6 Op 
approximation [12], their carrying capacity at time t is equal to ~ dt S M s r  ~s dr '~x .  Therefore, in time 

3vcrr dt SM~ r6~s dr ~x" At the same time, in dt, the initial flux of the suspension vSd t  decreases by 32~3m----- ~ 

0 
the case of a fixed pressure differential, Darcy's law leads to the equality 

Ov dt - 1 Ok Op 
O--t # Ot dt -~x" 

From this and from the above arguments, we conclude that 

0k 3~rc . 
-~- = - v  ~ -~Is / r6~., dr. (10) 

0 

In particular, it follows form (10) that the decrease in permeability is greater at the points where the 
flow velocity is higher and where the flow is more enriched in suspended particles. In media with low porosity, 
such variations become more abrupt. 

System (1)-(10) is closed and, with appropriate boundary conditions and initial data, it completely 
determines the development of the sedimentation process. The "extra" condition (1) distinguishes physically 
meaningful solutions among the possible solutions of system (2)-(10). Extension to the multidimensional 
case is obtained by substituting v = Ivl into tim right sides of Eqs. (3)-(7) and (10), where v is the filtration 
velocity vector, by replacing the derivative with respect to x in (3) and on the left side of (8) by div v, and 
using the appropriate vectorial form of Darcy's law in (9). 

Equ i l ib r ium Regimes.  From a physical point of view, the equilibrium reginms are important because 
they describe the intrinsic properties of the process where the effects of temporal and spatial boundaries can 
be neglected. System (3)-(8) has a class of solutions in which the velocity of filtration v is a given constant 
and m, c, M, ~Zs, and 1 depend on x and t only through the variable ~ = x - at,  where a is the needed 
velocity of a simple wave. In this case, Eqs. (3)-(7) reduces to 

dc de _ v c ( l  _ C) l , dm = vc l ' 

o ~  

a ~ = vc r2~z,H(fi - r)/  r2~sdr ,  a - - ~  = vc47rfi 3 -[, (11) 

0 

dl / / ,  ) = VC r4~s dr  r'•s dr - q . - c rm  -~  / 

0 0 

The first and second equations of system (11) yield the equality m(1 - c) + v c / a  = a, where a is a 
certain constant. To find a, we assume that the porous structure before the wave is in a certain perturbed 

state: 

c=O,  m = r n + ,  M = M + ,  ~ s = ~ + ( r ) ,  l = l +  as ~ = + c r  (12) 
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where 0 < rn+ < 1 and M+ > 0 are known parameters, l+ > 0 is unknown, and ~+(r)  is the known 
distribution of pores by radii. In this case, a = m+, i.e., m(1 - c) + cv/a = m+, and this leads to the 
following simple dependence of the concentration on the porosity and the velocity of wave propagation: 

T r t +  - -  7Yt 

c - v / o .  - m (13) 

Let a certain stable state appear past the wave: 

c = c + ,  m = m . ,  M = M . ,  ~as=~ . ( r )  as ~ = - c ~ .  (14) 

Here 0 < c+ < I is a known constant, 0 < m.  < 1 and M. > 0 are unknowns, and p . ( r )  is a unknown 
function. It follows from (13) that, in this case, the wave propagation velocity a is given by 

V = m +  - - m .  ~ - m . c +  
, (15) 

Or C+ 

i.e., the flux of suspended particles vc+ is divided into two components. The first of them o.(m+ - m.) is 
entrained in the porous medium, and the second component o.m.c+ is carried by the fluid. 

The second and fourth equations of system (11) yield the equality (4/3)7~fi3M - m - const. From this 
and from (12), we conclude that  

3 
= M+ - - (16) 

The physical meaning of these relations is that  the blocking of a pore is accompanied by a decrease in the 
pore space by the volume of the entrained particle. 

Using (2) and integrating the third equation of system (11), we obtain 

~o 

ln(M~s)  = A l ( r ) + H ( f i - r ) (  4o./533v r2 / Cd~_+A.)(r)),m " 

where Al(r)  and A2(r) are arbitrary functions and ~0 is an arbitrary constant. Assuming that  the integral 
converges at ~ ---- + ~  and using condition (12), we obtain 

hI+p+(r) (I + H(fi - r)(exp (-~e(~)r 2) - I)). (17) 

The function ~e(~) included in this representation is defined by 

+ o c  

3v f rn+ - m  dr  (18) 
. l m  

From the second equation of system (11), and also from (3), (17), and (18) it follows that  

dm _ d f p+(r)  exp (-~e(~)r 2) d~ d~( 47rfi31~I+ dr). 
o 

Integrating this differential relation and taking into account that, according to (14), c/m ~ c+/rn. > 0 as 
--* + ~ ,  we obtain the following representation for the porosity: 

# 4 / 
m(~) = m.  + g ~'~3M+ p+(r)  exp (-~e(~)r 2) dr. (19) 

0 

We now consider the parameters m . ,  h i . ,  and l+ and the function ~.(r) which enter conditions (12) 
and (14) and representations (13) and (15)-(19). The quantity M+ and the function ~+(r)  specify the 
unperturbed state  of the medium before the wave. To determine this state uniquely, it is necessary to specify 
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one more characteristic, e.g., 
--- + c ~ ,  i . e . ,  

m+. Then, the parameter l+ must be such that equality (2) is satisfied at 

o O  

m+ = ~/+AI+ f r2~9+(r) dr. 

o 

Then, in view of (3) and (11), we have 
'3O 

(20) 

Passing to the limit ~ ~ -cx~ in (16), we obtain the required representation for the parameter m. :  

m.  = m+ - 4 7r~53(M+ _ M.).  (23) 

Thus, let the characteristics of the unperturbed porous structure qz+(r), M+, and m+, the particle size 
fi, and the concentration c+ coming with the flow be given. We require satisfaction of the inequality 

4 
/ .  

3 ./-- ~+ (r) dr, (24) m+ > M+ 

0 

which means tha t  the pore space of this structure contains the maximum possible pore volume to be blocked 
up by" particles. (Otherwise, the equilibrium regime does not occur, and a rear front appears.) From (20)-(23) 
and (15), we successively obta in /+ ,  it/ . ,  ~.(, ' ) ,  m . ,  and (7. Then, it follows from condition (24) tha t  m .  > 0. 
In this case, M,  and (7 are positive. Relations (18) and (19) form a system of two nonlinear equations for 
m(~) and ~e(~). Let a solution of this system exist, and m( -o r  = m. ,  m ( + ~ )  = m+, m.  < m(~) < m+, 
~e(~) > 0, ze(-oo) = +cr  and ae(+cr = 0. Then, (15) yields the inequality v / (7  - m(,~) > v / (7  - m+ > 0, 
and the function c(~) determined from (13) satisfies the natural limitation on concentration 0 < c < c+ and 
the conditions c(+cr = 0 and c(-oo)  = c+. It follows from (16), (23), (2), and (20) that M(+er  = M+, 
M ( - o r  = M.,  and l(+cr = l+. The two other limiting conditions ~ ( + o o ,  r) = ~+(r) and qVs(-Oc,r) = 
~ . ( r )  follow from (17) and (21). 

The solution of system (18), (19) is constructed as follows. We introduce the paranmter s E (0, +cx~) 
and the function 

f ~+(r)  exp ( - s r  2) dr. (25) q~(s) 
~ t  

0 

Let the functions rn(s), ~(s), and a~(s) be determined by the rule 
8 0  

= + = re(y) v/(7-m(y)m+ re(y) = s, (26) 
8 
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M. = M+ f d,.. (22) 

0 0 

with a certain function Q(~). Using this differential relation, we conclude that equality (2) is a consequence 
of its particular form (20). Then, the function l(~) can be obtained from (2) and (19). 

Similarly, for the normalization condition (1) to be satisfied everywhere, it is sufficient to require that  
it be satisfied for a single value of the variable ~, for example for ~ = -oo.  Then, it follows from (17), (18), 
and the properties of the function ~e(~) that  as ~ --. -c r  the limit of AlCZs is equal to M.qv., where 

M+ 
c ; . ( r )  ----- -~[[. c ; + ( r ) H ( r  - fi); (21) 

o o  



where so and ~0 are certain fixed numbers.  

The function re(s) decreases monotonically, rn (+c r  = m. ,  and m(+0)  = m+ in view of (22) and (23). 

In this case, v/cr - m(s) > 0 and the integrand on the right side of (26) is positive for all s > 0. Therefore, 
~(s) is defined for s > 0 and decreases monotonically. Using" (22) and (23), we obtain  

re(s) = R 7rfi3h[+~(s)' ~ ( s )  = I ~ + ( r ) ( 1 - e x p ( - s r 2 ) ) d r .  m + -  

o 

The function ~(s) ,  which is analytic in s, vanishes a t  s = 0, and ko~(0) > 0. Therefore,  the representation 

m +  - re(s) = sA[1 + O(s)] with a positive constant A is valid in the neighborhood of the point s = 0. Hence 

it follows that  ~(+0) = +c r  and, since ('v/~ - m . ) / (m+ - m . )  = (1 - c+)/c+ according to (15), we have 

~(+c~) = - o c .  This implies tha t  the inverse function s(~) is defined on the axis - c r  < ~ < +cr  and it 

decreases monotonically f rom s ( - ~ )  = +oc  to s (+oo)  = 0. In this case, m(s(~)) increases monotonically 

from m(s(-oo)) = m. to m(s(+or = m+. Since, in the  limit s --~ +0,  ~(s) behaves like - A  In s, the 
integral of the function m +  - m(s(~))  converges at  ~ = +oc .  Next, by construction,  ee(s(~)) satisfies the 
differential equation 

dee 3v m+ - rn(s(~)) 1 
d~ 4fi3a v / c r -  rn(s(,~)) rn(s(~)) '  

and, therefore, 

3v / m+ - m(s(y)) dy 
= - j - 

~o 

where ee0 is a certain constant.  Let t ing ~ --~ +oc and taking into account the convergence of the integral and 
the fact that  ee(s(+oc)) ---- 0, we obtain the equality 

+oo 
3v f m+ - -  m(s(y)) dg 

= ] 
,% 

i.e., ee(s(~)) satisfies the relation (18). 

Thus, system (18), (19) is solvable and its solution has all the necessary properties.  The nonuniqueness 

of the choice of ~0 in (26) is due to the fact that  a s imple wave admits  a shift by an arbitrary constant.  
Representations (25) and (26) are convenient from a computa t iona l  viewpoint because they admit expansions 
of the functions re(s) and ~(s) in power series. As follows from (10), the equali ty Ms = lM, representation 

(17) for the function ~ ,  and relations (26) between ~ and s, this parametr izat ion leads to a simple expression 
for the porosity: 

s 

k(s) = k+ - 83I+ / l ( y )  / r 6 ~ + ( r ) e x p ( - y r 2 ) d r d y .  (27) 

0 0 

Here k+ is the pernmability of the medium in its unpe r tu rbed  initial s ta te  and the integral on the right side 
of (27) converges as s --~ +oo.  

It  can be shown tha t  the free pa th  of a particle of the suspension A is defined by the fornmla A = 

/(1 - q)/q, where q is given by (3), and it increases infinitely with passage of the wave. The behavior of the 
fimction l(s) is more complicated,  and here greatly depends  on the contribution of small pores. Thus, if there 
is sufficient pore space for being potential ly blocked up, i.e., 

4 -3 l+ / r2~sdr>-~TcP / ~ s d r ,  
0 0 

then the inequality l ( - o c )  > l+ holds. 
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Conclusions .  Let us point out several important properties of the sedimentation process. First of all, 
there is no distribution function whose form remains unchanged with time. A characteristic feature of pores 
of small radii is that their most representative part is "cut off"' and the remaining part increases. Probably, 
this is a reason for the formation of distributions with several maxima in the sedimentation process. 

Since the functions re(s) and k(s) are monotonic, representation (27) defines the monotonically in- 
creasing function k(m). As the relations obtained above show, this dependence also includes information 
on the initial state of the pore structure. Tiffs, in particular, explains the diversity of tlm known empirical 
dependences k(m). 

As follows from (14), not only the porosity but also the concentration of suspended particles vary 
monotonically. It can be shown that plots of the functions m(~), c(~), and k(~) have inflection points. Such 
points are also characteristic of experimental curves [1, 2]. The appearance of these points indicates that the 
flow has reached an equilibrium regime. 

Integral models that are most often used to describe sedimentation processes include a number of 
additional empirical quantities apart from k(m) [6-8]. The equilibrium regimes considered in the present 
paper are important because they can be used to obtain relations that express the kinetic parameters in 
terms of averaged flow characteristics [13]. 
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